
Gumloop
AI零代码工作流平台让企业轻松构建自动化流程,无需编程基础,通过可视化拖拽即可设计复杂业务流程。平台提供丰富的表单模板和触发器,支持多系统集成,实现数据自动流转与审批,提升团队协作效率。适用于人事、财务、销售等多个场景,助力企业数字化转型。
昇思MindSpore是华为推出的适用端边云场景的新型开源全场景深度学习框架,昇思MindSpore具备强大的分布式训练能力,内置多种并行策略,简化大模型开发。昇思MindSpore与昇腾处理器深度适配,充分发挥硬件性能,缩短训练时间并提升推理效率。昇思MindSpore支持AI与高性能计算(HPC)融合,满足AI for Science场景需求。昇思MindSpore生态丰富,提供开源项目、案例和SOTA模型,方便开发者快速上手和应用。
pip install mindspore
pip install mindspore-gpu==1.10.0
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.6.0/MindSpore/unified/aarch64/mindspore-2.6.0-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
import mindsporeprint(mindspore.__version__)
import mindspore.dataset as dsfrom mindspore.dataset.transforms import Compose, ToTensor, Normalize# 加载MNIST数据集dataset = ds.MnistDataset(\"path/to/mnist_dataset\")transforms = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])dataset = dataset.map(operations=transforms, input_columns=[\"image\"])dataset = dataset.batch(batch_size=64)
import mindspore.nn as nnimport mindspore.ops as opsclass LeNet5(nn.Cell): def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, pad_mode=\'valid\') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode=\'valid\') self.fc1 = nn.Dense(16 * 5 * 5, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2) self.flatten = ops.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return xmodel = LeNet5()
Model
类,简化训练和评估流程。from mindspore.train import Modelfrom mindspore.nn import SoftmaxCrossEntropyWithLogits, Momentumfrom mindspore.train.callback import ModelCheckpoint, CheckpointConfig# 定义损失函数和优化器loss_fn = SoftmaxCrossEntropyWithLogits(sparse=True, reduction=\'mean\')optimizer = Momentum(model.trainable_params(), learning_rate=0.01, momentum=0.9)# 创建Model实例model = Model(model, loss_fn=loss_fn, optimizer=optimizer, metrics={\'accuracy\'})# 设置保存检查点的配置config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)ckpoint_cb = ModelCheckpoint(prefix=\"lenet\", config=config_ck)# 开始训练model.train(10, dataset, callbacks=[ckpoint_cb])
# 加载测试数据集test_dataset = ds.MnistDataset(\"path/to/mnist_test_dataset\")test_dataset = test_dataset.map(operations=transforms, input_columns=[\"image\"])test_dataset = test_dataset.batch(batch_size=64)# 评估模型acc = model.eval(test_dataset)print(f\"Accuracy: {acc[\'accuracy\']}\")
云知AI导航收录的「昇思MindSpore」等资源均来自互联网,外部链接的内容与准确性不由本站保证或控制。同时,对于该外部链接的指向,不由云知AI导航实际控制,在2025年8月23日 上午5:44收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,云知AI导航不承担由此产生的任何责任。